I am new to using GLPK and have a basic question. How do I get an intermediate results from GLPK solver?
GLPK Integer Optimizer, v4.52
245 rows, 5780 columns, 74425 non-zeros
5780 integer variables, all of which are binary
219 rows, 5780 columns, 74425 non-zeros
5780 integer variables, all of which are binary
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 4.800e+02 ratio = 4.800e+02
GM: min|aij| = 8.409e-01 max|aij| = 1.189e+00 ratio = 1.414e+00
EQ: min|aij| = 7.071e-01 max|aij| = 1.000e+00 ratio = 1.414e+00
2N: min|aij| = 4.688e-01 max|aij| = 1.000e+00 ratio = 2.133e+00
Constructing initial basis...
Size of triangular part is 219
Solving LP relaxation...
GLPK Simplex Optimizer, v4.52
219 rows, 5780 columns, 74425 non-zeros
0: obj = 0.000000000e+00 infeas = 1.987e+02 (0)
* 215: obj = 2.076000000e+03 infeas = 2.922e-16 (0)
* 359: obj = 1.692000000e+03 infeas = 3.642e-15 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
+ 359: mip = not found yet >= -inf (1; 0)
+ 18965: >>>>> 1.728000000e+03 >= 1.692000000e+03 2.1% (27; 0)
+ 35208: mip = 1.728000000e+03 >= 1.692000000e+03 2.1% (332; 5)
+ 65967: mip = 1.728000000e+03 >= 1.692000000e+03 2.1% (452; 10)
+ 73524: >>>>> 1.727000000e+03 >= 1.692000000e+03 2.0% (472; 11)
Solution found by heuristic: 1695.5
+119791: mip = 1.695500000e+03 >= 1.692000000e+03 0.2% (90; 890)
+214828: mip = 1.695500000e+03 >= 1.692000000e+03 0.2% (155; 940)
+267053: mip = 1.695500000e+03 >= 1.692000000e+03 0.2% (184; 970)
Solution found by heuristic: 1694.5
+310964: mip = 1.694500000e+03 >= 1.692000000e+03 0.1% (174; 1055)
+355652: mip = 1.694500000e+03 >= 1.692000000e+03 0.1% (197; 1078)
+407645: mip = 1.694500000e+03 >= 1.692000000e+03 0.1% (230; 1106)
+461623: mip = 1.694500000e+03 >= 1.692000000e+03 0.1% (269; 1131)
+508530: mip = 1.694500000e+03 >= 1.692000000e+03 0.1% (290; 1159)
Time used: 60.0 secs. Memory used: 14.2 Mb.
Solution found by heuristic: 1694
+558883: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (118; 1642)
+614633: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (120; 1724)
+668817: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (141; 1758)
+714634: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (156; 1789)
+766751: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (168; 1842)
+817245: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (179; 1890)
+863583: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (182; 1935)
+903378: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (192; 1957)
+950337: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (199; 1992)
+1003705: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (197; 2060)
+1051498: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (206; 2096)
+1097592: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (215; 2138)
Time used: 120.1 secs. Memory used: 14.7 Mb.
+1146344: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (228; 2185)
+1200995: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (217; 2273)
+1252811: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (221; 2326)
+1305695: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (214; 2404)
+1355169: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (227; 2441)
+1410459: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (230; 2508)
+1462302: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (229; 2579)
+1508966: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (229; 2630)
+1557680: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (240; 2686)
+1608641: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (254; 2736)
+1654290: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (276; 2763)
Time used: 180.2 secs. Memory used: 16.4 Mb.
+1704351: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (282; 2812)
+1758047: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (287; 2866)
+1809837: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (294; 2914)
+1859729: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (299; 2984)
+1908448: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (305; 3029)
+1961399: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (310; 3077)
+2014725: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (316; 3134)
+2063757: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (328; 3190)
+2108863: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (333; 3247)
+2157464: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (331; 3304)
+2210431: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (347; 3351)
+2259316: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (363; 3389)
Time used: 240.2 secs. Memory used: 18.5 Mb.
+2306956: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (362; 3454)
+2360452: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (366; 3510)
+2413187: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (378; 3563)
+2463614: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (392; 3620)
+2508314: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (400; 3665)
+2555599: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (399; 3732)
+2607963: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (407; 3790)
+2659538: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (411; 3858)
+2705092: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (418; 3907)
+2758073: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (429; 3962)
+2812762: mip = 1.694000000e+03 >= 1.692000000e+03 0.1% (426; 403
From the logs, I assume that we are 0.1% away from optimal - but do not know how to get the intermediate solution.