[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [Help-glpk] Assertion failed
From: |
Andrew Makhorin |
Subject: |
Re: [Help-glpk] Assertion failed |
Date: |
Fri, 14 Jul 2006 05:09:09 +0400 |
I slightly modified lp relaxation of your problem to avoid the error
in glpk simplex solver as follows:
------------------------------------------------------------------------
Minimize
obj: x_1
Subject To
r_1: - 1003 x_1 + x_2 >= 0
r_2: - 1999 x_2 + x_3 >= 0
r_3: - 4000 x_3 + x_4 >= 0
r_4: + 8000 x_4 + x_5 <= 0
r_5: + 2 x_5 + x_6 >= 0
\ r_6: - x_1 <= -1002
\ r_7: - x_2 <= -1005006
\ r_8: - x_3 <= 138476654
\ r_9: - x_4 <= -144165184
\ r_10: - x_6 <= -1
Bounds
x_1 >= 1002
x_2 >= 1005006
x_3 >= -138476654
x_4 >= 144165184
x_5 free
x_6 >= 1
------------------------------------------------------------------------
And using options --nopresol --std --noscale I managed to obtain the
optimal solution of lp relaxation:
------------------------------------------------------------------------
Problem:
Rows: 5
Columns: 6
Non-zeros: 10
Status: OPTIMAL
Objective: obj = 1002 (MINimum)
No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
1 r_1 B 0 0
2 r_2 NL 0 0 < eps
3 r_3 NL 0 0 < eps
4 r_4 NU 0 0 < eps
5 r_5 NL 0 0 < eps
No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
1 x_1 NL 1002 1002 1
2 x_2 NL 1.00501e+06 1.00501e+06 < eps
3 x_3 B 2.00901e+09 -1.38477e+08
4 x_4 B 8.03603e+12 1.44165e+08
5 x_5 B -6.42882e+16
6 x_6 B 1.28576e+17 1
Karush-Kuhn-Tucker optimality conditions:
KKT.PE: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality
KKT.PB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality
KKT.DE: max.abs.err. = 0.00e+00 on column 0
max.rel.err. = 0.00e+00 on column 0
High quality
KKT.DB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality
End of output
------------------------------------------------------------------------
You may note that x_3 x_4 x_5 and x_6 have too large values and cannot
be modelled as integer variables.
(Btw, within a tolerance 1e-6 the solution is integer feasible :)
Andrew Makhorin