[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Commit-gnuradio] r11533 - in gnuradio/branches/developers/n4hy/pfb_iir2
From: |
n4hy |
Subject: |
[Commit-gnuradio] r11533 - in gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python: . pfb |
Date: |
Mon, 3 Aug 2009 09:48:59 -0600 (MDT) |
Author: n4hy
Date: 2009-08-03 09:48:59 -0600 (Mon, 03 Aug 2009)
New Revision: 11533
Added:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/channelize.py
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/chirp_channelize.py
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/decimate.py
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/interpolate.py
Log:
add Tom's examples and we can begin work
Added:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/channelize.py
===================================================================
---
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/channelize.py
(rev 0)
+++
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/channelize.py
2009-08-03 15:48:59 UTC (rev 11533)
@@ -0,0 +1,148 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, blks2
+import math
+import os
+import scipy, pylab
+from scipy import fftpack
+import time
+
+#print os.getpid()
+#raw_input()
+
+class pfb_top_block(gr.top_block):
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ self._N = 2000000
+ self._fs = 9000
+ self._Tmax = self._N * (1.0/self._fs)
+ self._M = 9
+ self._taps = gr.firdes.low_pass_2(1, self._fs, 475,50, 100,5)
+
+ fc = 200
+
+ tpc = math.ceil(float(len(self._taps)) / float(self._M))
+
+ print "Number of taps: ", len(self._taps)
+ print "Number of channels: ", self._M
+ print "Taps per channel: ", tpc
+
+ self.signals = list()
+ self.add = gr.add_cc()
+ freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4300]
+ for i in xrange(len(freqs)):
+ self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE,
freqs[i], 1))
+ self.connect(self.signals[i], (self.add,i))
+
+ self.head = gr.head(gr.sizeof_gr_complex, self._N)
+ self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+ self.snk_i = gr.vector_sink_c()
+
+ # Connect the blocks
+ self.connect(self.add, self.head, self.pfb)
+ self.connect(self.add, self.snk_i)
+
+ # Create a file sink for each of M output channels of the filter and
connect it
+ self.snks = list()
+ for i in xrange(self._M):
+ self.snks.append(gr.vector_sink_c())
+ self.connect((self.pfb, i), self.snks[i])
+
+
+def main():
+ tstart = time.time()
+
+ tb = pfb_top_block()
+ tb.run()
+
+ tend = time.time()
+ print "Run time: %f" % (tend - tstart)
+
+ if 1:
+ fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
+ fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
+ fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
+
+ Ns = 1000
+ Ne = 10000
+
+ fftlen = 8192
+ winfunc = scipy.blackman
+ fs = tb._fs
+
+ # Plot the input signal on its own figure
+ d = tb.snk_i.data()[Ns:Ne]
+ spin_f = fig_in.add_subplot(2, 1, 1)
+
+ X,freq = spin_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+ window = lambda d: d*winfunc(fftlen),
+ visible=False)
+ X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+ pin_f = spin_f.plot(f_in, X_in, "b")
+ spin_f.set_xlim([min(f_in), max(f_in)+1])
+ spin_f.set_ylim([-200.0, 50.0])
+
+ spin_f.set_title("Input Signal", weight="bold")
+ spin_f.set_xlabel("Frequency (Hz)")
+ spin_f.set_ylabel("Power (dBW)")
+
+ t_in = scipy.arange(0, tb._Tmax, tb._Tmax/float(len(d)))
+ x_in = scipy.array(d)
+ spin_t = fig_in.add_subplot(2, 1, 2)
+ pin_t = spin_t.plot(t_in, x_in.real, "b")
+ pin_t = spin_t.plot(t_in, x_in.imag, "r")
+
+ spin_t.set_xlabel("Time (s)")
+ spin_t.set_ylabel("Amplitude")
+
+ Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
+ Nrows = int(scipy.floor(tb._M / Ncols))
+ if(tb._M % Ncols != 0):
+ Nrows += 1
+
+ # Plot each of the channels outputs. Frequencies on Figure 2 and
+ # time signals on Figure 3
+ fs_o = tb._fs / tb._M
+ for i in xrange(len(tb.snks)):
+ # remove issues with the transients at the beginning
+ # also remove some corruption at the end of the stream
+ # this is a bug, probably due to the corner cases
+ d = tb.snks[i].data()[Ns:Ne]
+
+ sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
+ X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+ window = lambda d: d*winfunc(fftlen),
+ visible=False)
+ X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+ p2_f = sp1_f.plot(f_o, X_o, "b")
+ sp1_f.set_xlim([min(f_o), max(f_o)+1])
+ sp1_f.set_ylim([-200.0, 50.0])
+
+ sp1_f.set_title(("Channel %d" % i), weight="bold")
+ sp1_f.set_xlabel("Frequency (Hz)")
+ sp1_f.set_ylabel("Power (dBW)")
+
+
+ x_o = scipy.array(d)
+ t_o = scipy.arange(0, tb._Tmax, tb._Tmax/float(x_o.size))
+ sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
+ p2_o = sp2_o.plot(t_o, x_o.real, "b")
+ p2_o = sp2_o.plot(t_o, x_o.imag, "r")
+ sp2_o.set_xlim([min(t_o), max(t_o)+1])
+ sp2_o.set_ylim([-2, 2])
+
+ sp2_o.set_xlabel("Time (s)")
+ sp2_o.set_ylabel("Amplitude")
+
+ pylab.show()
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+
Property changes on:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/channelize.py
___________________________________________________________________
Added: svn:executable
+ *
Added:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/chirp_channelize.py
===================================================================
---
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/chirp_channelize.py
(rev 0)
+++
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/chirp_channelize.py
2009-08-03 15:48:59 UTC (rev 11533)
@@ -0,0 +1,107 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, blks2
+import math
+import os
+import scipy, pylab
+from scipy import fftpack
+import time
+
+#print os.getpid()
+#raw_input()
+
+class pfb_top_block(gr.top_block):
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ self._N = 200000
+ self._fs = 9000
+ self._Tmax = self._N * (1.0/self._fs)
+ self._M = 9
+ self._taps = gr.firdes.low_pass_2(1, self._fs, 800,100 ,90,5)
+ fc = 200
+
+ tpc = math.ceil(float(len(self._taps)) / float(self._M))
+
+ print "Number of taps: ", len(self._taps)
+ print "Number of channels: ", self._M
+ print "Taps per channel: ", tpc
+
+ data = scipy.arange(0, 1000, 100.0/float(self._N))
+
+ #self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 100)
+ self.vco_input = gr.vector_source_f(data, False)
+ self.vco = gr.vco_f(self._fs, 225, 1)
+ self.f2c = gr.float_to_complex()
+
+ self.head = gr.head(gr.sizeof_gr_complex, self._N)
+ self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+ self.snk_i = gr.vector_sink_c()
+
+ # Connect the rest
+ self.connect(self.vco_input, self.vco, self.f2c)
+ self.connect(self.f2c, self.head, self.pfb)
+ self.connect(self.f2c, self.snk_i)
+
+ # Create a file sink for each of M output channels of the filter and
connect it
+ self.snks = list()
+ for i in xrange(self._M):
+ self.snks.append(gr.vector_sink_c())
+ self.connect((self.pfb, i), self.snks[i])
+
+
+def main():
+ tstart = time.time()
+
+ tb = pfb_top_block()
+ tb.run()
+
+ tend = time.time()
+ print "Run time: %f" % (tend - tstart)
+
+ if 1:
+ fig1 = pylab.figure(1, figsize=(16,9))
+ fig2 = pylab.figure(2, figsize=(16,9))
+
+ Ns = 100
+ Ne = tb._N
+ d = tb.snk_i.data()[Ns:Ne]
+ f_in = scipy.arange(-tb._fs/2.0, tb._fs/2.0, tb._fs/float(len(d)))
+ X_in = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d, f_in.size)))
+ sp1_in = fig1.add_subplot(4, 3, 1)
+ p1_in = sp1_in.plot(f_in, X_in)
+
+ t_in = scipy.arange(0, tb._Tmax, tb._Tmax/float(len(d)))
+ x_in = scipy.array(d)
+ sp2_in = fig2.add_subplot(4, 3, 1)
+ p2_in = sp2_in.plot(t_in, x_in.real, "b")
+ p2_in = sp2_in.plot(t_in, x_in.imag, "r")
+
+ fs_o = tb._fs / tb._M
+ for i in xrange(len(tb.snks)):
+ # remove issues with the transients at the beginning
+ # also remove some corruption at the end of the stream
+ # this is a bug, probably due to the corner cases
+ d = tb.snks[i].data()[Ns:Ne]
+ f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(len(d)))
+ x_o = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d)))
+ sp1_o = fig1.add_subplot(4, 3, 2+i)
+ p1_o = sp1_o.plot(f_o, x_o)
+ sp1_o.set_ylim([-50.0, 30.0])
+
+ x_o = scipy.array(d)
+ t_o = scipy.arange(0, tb._Tmax, tb._Tmax/float(x_o.size))
+ sp2_o = fig2.add_subplot(4, 3, 2+i)
+ p2_o = sp2_o.plot(t_o, x_o.real, "b")
+ p2_o = sp2_o.plot(t_o, x_o.imag, "r")
+ sp2_o.set_ylim([-1.0, 1.0])
+
+ pylab.show()
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+
Property changes on:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/chirp_channelize.py
___________________________________________________________________
Added: svn:executable
+ *
Added:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/decimate.py
===================================================================
---
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/decimate.py
(rev 0)
+++
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/decimate.py
2009-08-03 15:48:59 UTC (rev 11533)
@@ -0,0 +1,135 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, blks2
+import math
+import os
+import scipy, pylab
+from scipy import fftpack
+import time
+
+#print os.getpid()
+#raw_input()
+
+class pfb_top_block(gr.top_block):
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ self._N = 10000000
+ self._fs = 10000
+ self._Tmax = self._N * (1.0/self._fs)
+ self._decim = 20
+ self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 50,120,5)
+
+ tpc = math.ceil(float(len(self._taps)) / float(self._decim))
+
+ print "Number of taps: ", len(self._taps)
+ print "Number of filters: ", self._decim
+ print "Taps per channel: ", tpc
+
+ self.signals = list()
+ self.add = gr.add_cc()
+ freqs = [10, 2040]
+ for i in xrange(len(freqs)):
+ self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE,
freqs[i], 1))
+ self.connect(self.signals[i], (self.add,i))
+
+ self.head = gr.head(gr.sizeof_gr_complex, self._N)
+ self.pfb = blks2.pfb_decimator_ccf(self._decim, self._taps, 0)
+ #self.pfb = gr.fir_filter_ccf(self._decim, self._taps)
+ self.snk_i = gr.vector_sink_c()
+
+ # Connect the blocks
+ self.connect(self.add, self.head, self.pfb)
+ self.connect(self.add, self.snk_i)
+
+ # Create the sink for the decimated siganl
+ self.snk = gr.vector_sink_c()
+ self.connect(self.pfb, self.snk)
+
+
+def main():
+ tb = pfb_top_block()
+
+ tstart = time.time()
+ tb.run()
+ tend = time.time()
+ print "Run time: %f" % (tend - tstart)
+
+ if 1:
+ fig1 = pylab.figure(1, figsize=(16,9))
+ fig2 = pylab.figure(2, figsize=(16,9))
+
+ Ns = 10000
+ Ne = 10000
+
+ fftlen = 8192
+ winfunc = scipy.blackman
+ fs = tb._fs
+
+ # Plot the input to the decimator
+
+ d = tb.snk_i.data()[Ns:Ns+Ne]
+ sp1_f = fig1.add_subplot(2, 1, 1)
+
+ X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+ window = lambda d: d*winfunc(fftlen),
+ visible=False)
+ X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+ p1_f = sp1_f.plot(f_in, X_in, "b")
+ sp1_f.set_xlim([min(f_in), max(f_in)+1])
+ sp1_f.set_ylim([-200.0, 50.0])
+
+ sp1_f.set_title("Input Signal", weight="bold")
+ sp1_f.set_xlabel("Frequency (Hz)")
+ sp1_f.set_ylabel("Power (dBW)")
+
+ t_in = scipy.arange(0, tb._Tmax, tb._Tmax/float(len(d)))
+ x_in = scipy.array(d)
+ sp1_t = fig1.add_subplot(2, 1, 2)
+ p1_t = sp1_t.plot(t_in, x_in.real, "b")
+ p1_t = sp1_t.plot(t_in, x_in.imag, "r")
+ sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1])
+
+ sp1_t.set_xlabel("Time (s)")
+ sp1_t.set_ylabel("Amplitude")
+
+
+ # Plot the output of the decimator
+ fs_o = tb._fs / tb._decim
+
+ sp2_f = fig2.add_subplot(2, 1, 1)
+ d = tb.snk.data()[Ns:Ns+Ne]
+ X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+ window = lambda d: d*winfunc(fftlen),
+ visible=False)
+ X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+ p2_f = sp2_f.plot(f_o, X_o, "b")
+ sp2_f.set_xlim([min(f_o), max(f_o)+1])
+ sp2_f.set_ylim([-200.0, 50.0])
+
+ sp2_f.set_title("PFB Decimated Signal", weight="bold")
+ sp2_f.set_xlabel("Frequency (Hz)")
+ sp2_f.set_ylabel("Power (dBW)")
+
+
+ x_o = scipy.array(d)
+ t_o = scipy.arange(0, tb._Tmax, tb._Tmax/float(x_o.size))
+ sp2_t = fig2.add_subplot(2, 1, 2)
+ p2_t = sp2_t.plot(t_o, x_o.real, "b")
+ p2_t = sp2_t.plot(t_o, x_o.imag, "r")
+ sp2_t.set_ylim([-1.5, 1.5])
+
+ sp2_t.set_xlabel("Time (s)")
+ sp2_t.set_ylabel("Amplitude")
+
+ pylab.show()
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+
Property changes on:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/decimate.py
___________________________________________________________________
Added: svn:executable
+ *
Added:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/interpolate.py
===================================================================
---
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/interpolate.py
(rev 0)
+++
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/interpolate.py
2009-08-03 15:48:59 UTC (rev 11533)
@@ -0,0 +1,194 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, blks2
+import math
+import os
+import scipy, pylab
+from scipy import fftpack
+import time
+
+#print os.getpid()
+#raw_input()
+
+class pfb_top_block(gr.top_block):
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ freq1 = 100
+ freq2 = 500
+
+ self._N = 100000
+ self._fs = 2000
+ self._Tmax = self._N * (1.0/self._fs)
+ self._interp = 8
+ self._ainterp = 8
+
+ self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs,
freq2+50, 150,120,5)
+ self._taps2 = gr.firdes.low_pass_2(32.0, 1,
+ 0.4 / (32.0), 0.1/(32.0),100,5)
+
+ tpc = math.ceil(float(len(self._taps)) / float(self._interp))
+
+ print "Number of taps: ", len(self._taps)
+ print "Number of filters: ", self._interp
+ print "Taps per channel: ", tpc
+
+ self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
+ self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
+ self.signal = gr.add_cc()
+
+ self.head = gr.head(gr.sizeof_gr_complex, self._N)
+ self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
+ self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2)
+ self.snk_i = gr.vector_sink_c()
+
+ #self.pfb_ar.pfb.print_taps()
+
+ # Connect the blocks
+ self.connect(self.signal1, self.head, (self.signal,0))
+ self.connect(self.signal2, (self.signal,1))
+ self.connect(self.signal, self.pfb)
+ self.connect(self.signal, self.pfb_ar)
+ self.connect(self.signal, self.snk_i)
+
+ # Create the sink for the interpolated siganl
+ self.snk1 = gr.vector_sink_c()
+ self.snk2 = gr.vector_sink_c()
+ self.connect(self.pfb, self.snk1)
+ self.connect(self.pfb_ar, self.snk2)
+
+
+def main():
+ tb = pfb_top_block()
+
+ tstart = time.time()
+ tb.run()
+ tend = time.time()
+ print "Run time: %f" % (tend - tstart)
+
+
+ if 1:
+ fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
+ fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
+ fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
+
+ Ns = 10000
+ Ne = 10000
+
+ fftlen = 8192
+ winfunc = scipy.blackman
+
+ # Plot input signal
+ fs = tb._fs
+
+ d = tb.snk_i.data()[Ns:Ns+Ne]
+ sp1_f = fig1.add_subplot(2, 1, 1)
+
+ X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+ window = lambda d: d*winfunc(fftlen),
+ visible=False)
+ X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+ p1_f = sp1_f.plot(f_in, X_in, "b")
+ sp1_f.set_xlim([min(f_in), max(f_in)+1])
+ sp1_f.set_ylim([-200.0, 50.0])
+
+
+ sp1_f.set_title("Input Signal", weight="bold")
+ sp1_f.set_xlabel("Frequency (Hz)")
+ sp1_f.set_ylabel("Power (dBW)")
+
+ Ts = 1.0/fs
+ Tmax = len(d)*Ts
+
+ t_in = scipy.arange(0, Tmax, Ts)
+ x_in = scipy.array(d)
+ sp1_t = fig1.add_subplot(2, 1, 2)
+ p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
+ #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
+ sp1_t.set_ylim([-2.5, 2.5])
+
+ sp1_t.set_title("Input Signal", weight="bold")
+ sp1_t.set_xlabel("Time (s)")
+ sp1_t.set_ylabel("Amplitude")
+
+
+ # Plot output of PFB interpolator
+ fs_int = tb._fs*tb._interp
+
+ sp2_f = fig2.add_subplot(2, 1, 1)
+ d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
+ X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+ window = lambda d: d*winfunc(fftlen),
+ visible=False)
+ X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size))
+ p2_f = sp2_f.plot(f_o, X_o, "b")
+ sp2_f.set_xlim([min(f_o), max(f_o)+1])
+ sp2_f.set_ylim([-200.0, 50.0])
+
+ sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
+ sp2_f.set_xlabel("Frequency (Hz)")
+ sp2_f.set_ylabel("Power (dBW)")
+
+ Ts_int = 1.0/fs_int
+ Tmax = len(d)*Ts_int
+
+ t_o = scipy.arange(0, Tmax, Ts_int)
+ x_o1 = scipy.array(d)
+ sp2_t = fig2.add_subplot(2, 1, 2)
+ p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
+ #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
+ sp2_t.set_ylim([-2.5, 2.5])
+
+ sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
+ sp2_t.set_xlabel("Time (s)")
+ sp2_t.set_ylabel("Amplitude")
+
+
+ # Plot output of PFB arbitrary resampler
+ fs_aint = tb._fs * tb._ainterp
+
+ sp3_f = fig3.add_subplot(2, 1, 1)
+ d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
+ X,freq = sp3_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+ window = lambda d: d*winfunc(fftlen),
+ visible=False)
+ X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size))
+ p3_f = sp3_f.plot(f_o, X_o, "b")
+ sp3_f.set_xlim([min(f_o), max(f_o)+1])
+ sp3_f.set_ylim([-200.0, 50.0])
+
+ #f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(len(d)))
+ #X_o = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d)))
+ #p3_f = sp3_f.plot(f_o, X_o)
+ #sp3_f.set_ylim([-50.0, 50.0])
+
+ sp3_f.set_title("Output Signal from PFB Arbitrary Resampler",
weight="bold")
+ sp3_f.set_xlabel("Frequency (Hz)")
+ sp3_f.set_ylabel("Power (dBW)")
+
+ Ts_aint = 1.0/fs_aint
+ Tmax = len(d)*Ts_aint
+
+ t_o = scipy.arange(0, Tmax, Ts_aint)
+ x_o1 = scipy.array(d)
+ sp3_f = fig3.add_subplot(2, 1, 2)
+ p3_f = sp3_f.plot(t_o, x_o1.real, "b-o")
+ #p3_f = sp3_f.plot(t_o, x_o.imag, "r-o")
+ sp3_f.set_ylim([-2.5, 2.5])
+
+ sp3_f.set_title("Output Signal from PFB Arbitrary Resampler",
weight="bold")
+ sp3_f.set_xlabel("Time (s)")
+ sp3_f.set_ylabel("Amplitude")
+
+ pylab.show()
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+
Property changes on:
gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python/pfb/interpolate.py
___________________________________________________________________
Added: svn:executable
+ *
[Prev in Thread] |
Current Thread |
[Next in Thread] |
- [Commit-gnuradio] r11533 - in gnuradio/branches/developers/n4hy/pfb_iir2/gnuradio-examples/python: . pfb,
n4hy <=