[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Commit-gnuradio] r11314 - gnuradio/branches/developers/trondeau/pfb/gnu
From: |
trondeau |
Subject: |
[Commit-gnuradio] r11314 - gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb |
Date: |
Mon, 29 Jun 2009 20:29:07 -0600 (MDT) |
Author: trondeau
Date: 2009-06-29 20:29:07 -0600 (Mon, 29 Jun 2009)
New Revision: 11314
Added:
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
Log:
Example use of PFB interpolator and arbitrary resampler.
Added:
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
===================================================================
---
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
(rev 0)
+++
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
2009-06-30 02:29:07 UTC (rev 11314)
@@ -0,0 +1,171 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, blks2
+import math
+import os
+import scipy, pylab
+from scipy import fftpack
+import time
+
+#print os.getpid()
+#raw_input()
+
+class pfb_top_block(gr.top_block):
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ freq1 = 100
+ freq2 = 500
+
+ self._N = 100000
+ self._fs = 2000
+ self._Tmax = self._N * (1.0/self._fs)
+ self._interp = 8
+ self._ainterp = 8
+
+ self._taps = gr.firdes.low_pass(self._interp, self._interp*self._fs,
freq2+50, 50)
+ self._taps2 = gr.firdes.low_pass(32.0, 1,
+ 0.4 / (32.0), 0.1/(32.0))
+
+ tpc = math.ceil(float(len(self._taps)) / float(self._interp))
+
+ print "Number of taps: ", len(self._taps)
+ print "Number of filters: ", self._interp
+ print "Taps per channel: ", tpc
+
+ self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
+ self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
+ self.signal = gr.add_cc()
+
+ self.head = gr.head(gr.sizeof_gr_complex, self._N)
+ self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
+ self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2)
+ self.snk_i = gr.vector_sink_c()
+
+ #self.pfb_ar.pfb.print_taps()
+
+ # Connect the blocks
+ self.connect(self.signal1, self.head, (self.signal,0))
+ self.connect(self.signal2, (self.signal,1))
+ self.connect(self.signal, self.pfb)
+ self.connect(self.signal, self.pfb_ar)
+ self.connect(self.signal, self.snk_i)
+
+ # Create the sink for the interpolated siganl
+ self.snk1 = gr.vector_sink_c()
+ self.snk2 = gr.vector_sink_c()
+ self.connect(self.pfb, self.snk1)
+ self.connect(self.pfb_ar, self.snk2)
+
+
+def main():
+ tb = pfb_top_block()
+
+ tstart = time.time()
+ tb.run()
+ tend = time.time()
+ print "Run time: %f" % (tend - tstart)
+
+
+ if 1:
+ fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
+ fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
+ fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
+
+ Ns = 10000
+ Ne = 10000
+
+ # Plot input signal
+ fs = tb._fs
+
+ d = tb.snk_i.data()[Ns:Ns+Ne]
+ f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(len(d)))
+ X_in = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d)))
+ sp1_f = fig1.add_subplot(2, 1, 1)
+ p1_f = sp1_f.plot(f_in, X_in)
+ sp1_f.set_ylim([-50.0, 50.0])
+
+ sp1_f.set_title("Input Signal", weight="bold")
+ sp1_f.set_xlabel("Frequency (Hz)")
+ sp1_f.set_ylabel("Power (dBW)")
+
+ Ts = 1.0/fs
+ Tmax = len(d)*Ts
+
+ t_in = scipy.arange(0, Tmax, Ts)
+ x_in = scipy.array(d)
+ sp1_t = fig1.add_subplot(2, 1, 2)
+ p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
+ #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
+ sp1_t.set_ylim([-2.5, 2.5])
+
+ sp1_t.set_title("Input Signal", weight="bold")
+ sp1_t.set_xlabel("Time (s)")
+ sp1_t.set_ylabel("Amplitude")
+
+
+ # Plot output of PFB interpolator
+ fs_int = tb._fs*tb._interp
+
+ d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
+ f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(len(d)))
+ X_o = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d)))
+ sp2_f = fig2.add_subplot(2, 1, 1)
+ p2_o = sp2_f.plot(f_o, X_o)
+ sp2_f.set_ylim([-50.0, 50.0])
+
+ sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
+ sp2_f.set_xlabel("Frequency (Hz)")
+ sp2_f.set_ylabel("Power (dBW)")
+
+ Ts_int = 1.0/fs_int
+ Tmax = len(d)*Ts_int
+
+ t_o = scipy.arange(0, Tmax, Ts_int)
+ x_o1 = scipy.array(d)
+ sp2_t = fig2.add_subplot(2, 1, 2)
+ p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
+ #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
+ sp2_t.set_ylim([-2.5, 2.5])
+
+ sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
+ sp2_t.set_xlabel("Time (s)")
+ sp2_t.set_ylabel("Amplitude")
+
+ # Plot output of PFB arbitrary resampler
+ fs_aint = tb._fs * tb._ainterp
+
+ d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
+ f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(len(d)))
+ X_o = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d)))
+ sp3_f = fig3.add_subplot(2, 1, 1)
+ p3_f = sp3_f.plot(f_o, X_o)
+ sp3_f.set_ylim([-50.0, 50.0])
+
+ sp3_f.set_title("Output Signal from PFB Arbitrary Resampler",
weight="bold")
+ sp3_f.set_xlabel("Frequency (Hz)")
+ sp3_f.set_ylabel("Power (dBW)")
+
+ Ts_aint = 1.0/fs_aint
+ Tmax = len(d)*Ts_aint
+
+ t_o = scipy.arange(0, Tmax, Ts_aint)
+ x_o1 = scipy.array(d)
+ sp3_f = fig3.add_subplot(2, 1, 2)
+ p3_f = sp3_f.plot(t_o, x_o1.real, "b-o")
+ #p3_f = sp3_f.plot(t_o, x_o.imag, "r-o")
+ sp3_f.set_ylim([-2.5, 2.5])
+
+ sp3_f.set_title("Output Signal from PFB Arbitrary Resampler",
weight="bold")
+ sp3_f.set_xlabel("Time (s)")
+ sp3_f.set_ylabel("Amplitude")
+
+ pylab.show()
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+
[Prev in Thread] |
Current Thread |
[Next in Thread] |
- [Commit-gnuradio] r11314 - gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb,
trondeau <=